חAMIBIA UCIVERSITY
OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 08BHAM	LEVEL: 8
COURSE CODE: ADC801S	COURSE NAME: ADVANCED CALCULUS
SESSION: JULY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS:100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINERS	DR ALFRED KAMUPINGENE
MODERATOR:	DR. D. MAKINDE

THIS QUESTION PAPER CONSISTS OF 2 PAGES INCLUDING THIS COVER PAGE

INSTRUCTIONS
1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. 3. All written work must be done in blue or black ink and sketches must be done in pencil.
4. Start answering each of questions $1,2,3,4$, and 5 on a new page.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1 (16 marks)

Given the function $\mathrm{f}(\mathrm{x})=x^{n}$ where $x \varepsilon[\mathrm{a}, \mathrm{b}]$, prove that $\mathrm{n}(\mathrm{b}-\mathrm{a}) a^{n-1}<b^{n}-a^{n}<\mathrm{n}(\mathrm{b}-\mathrm{a}) b^{n-1}$ by applying the Langrage's Mean Value Theorem.

Question 2(30 marks)

Factorise the following function $\mathrm{f}(\mathrm{x})=x^{4}-5 x^{3}+5 x^{2}+\mathrm{x}+2$ in terms of powers of $x-2$.

Question 3(9 marks)

If $\varphi(x, y, z)=x y^{2} z$ and $\mathbf{A}=x z \mathbf{i}-x y^{2} \mathbf{j}+y z^{2} \mathbf{k}$, find $\frac{\partial^{3}(\varphi A)}{\partial z \partial x^{2}}$ at the point $(2,-1,1)$.

Question 4(32 marks)

Consider the vector field $\mathbf{F}=\left(3 x^{2} y^{2} z+5 y^{3}, 2 x^{3} y z+15 x y^{2}-7 z, x^{3} y^{2}-7 y+4 z^{3}\right)$ with domain R^{3}.
4.1) Determine whether the above field is conservative.
4.2) If the field is, indeed, conservative, find a potential function for it.

Question 5(13 marks)

Suppose a firm has an order for 200 units of its product and wishes to distribute their manufacture between two of its plants, plant1 and plant2. Let q_{1} and q_{2} denote the outputs of plants 1 and 2 , respectively, and suppose the total cost function is given by $C=f\left(q_{1}, q_{2}\right)=2 q_{1}{ }^{2}+q_{1} q_{2}+q_{2}{ }^{2}+200$. How should the output be distributed in order to minimise costs?

