

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics		
QUALIFICATION CODE: 08BHAM	LEVEL: 8	
COURSE CODE: ADC801S	COURSE NAME: ADVANCED CALCULUS	
SESSION: JULY 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS:100	

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINERS	DR ALFRED KAMUPINGENE
MODERATOR:	DR. D. MAKINDE

THIS QUESTION PAPER CONSISTS OF 2 PAGES INCLUDING THIS COVER PAGE

INSTRUCTIONS		
 Answer ALL th 	ne questions in the booklet provided.	
2. Show clearly a	all the steps used in the calculations.	
3. All written wo	ork must be done in blue or black ink and sketches must	
be done in pe	ncil.	
4. Start answerir	ng each of questions 1, 2, 3,4, and 5 on a new page.	

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1(16 marks)

Given the function $f(x) = x^n$ where $x \in [a, b]$, prove that $n(b-a)a^{n-1} < b^n - a^n < n(b-a)b^{n-1}$ by applying the Langrage's Mean Value Theorem. (16)

Question 2(30 marks)

Factorise the following function
$$f(x) = x^4 - 5x^3 + 5x^2 + x + 2$$
 in terms of powers of $x - 2$. (30)

Question 3(9 marks)

If
$$\varphi(x,y,z) = xy^2 z$$
 and $\mathbf{A} = xz \mathbf{i} - xy^2 \mathbf{j} + yz^2 \mathbf{k}$, find $\frac{\partial^3(\varphi A)}{\partial z \partial x^2}$ at the point (2,-1,1). (9)

Question 4(32 marks)

Consider the vector field **F** = $(3x^2y^2z + 5y^3, 2x^3yz + 15xy^2 - 7z, x^3y^2 - 7y + 4z^3)$ with domain R^3 .

Question 5(13 marks)

Suppose a firm has an order for 200 units of its product and wishes to distribute their manufacture between two of its plants, plant1 and plant2. Let q_1 and q_2 denote the outputs of plants 1 and 2, respectively, and suppose the total cost function is given by $C = f(q_1, q_2) = 2q_1^2 + q_1q_2 + q_2^2 + 200$. How should the output be distributed in order to minimise costs? (13)

END OF PAPER TOTAL MARKS: 100